A Genetic Algorithm for the Segmentation of Known Touching Objects
نویسندگان
چکیده
Problem statement: Segmentation is the first and fundamental step in the process of computer vision and object classification. However, complicate or similar colour pattern add complexity to the segmentation of touching objects. The objective of this study was to develop a robust technique for the automatic segmentation and classification of touching plastic bottles, whose features were previously stored in a database. Approach: Our technique was based on the possibility to separate the two objects by means of a segment of straight line, whose position was determined by a genetic approach. The initial population of the genetic algorithm was heuristically determined among a large set of cutting lines, while further generations were selected based on the likelihood of the two objects with the images stored in the database. Results: Extensive testing, which was performed on random couples out of a population of 50 bottles, showed that the correct segmentation could be achieved in success rates above 90% with only a limited number of both chromosomes and iterations, thus reducing the computing time. Conclusion: These findings proved the effectiveness of our method as far as touching plastic bottles are concerned. This technique, being absolutely general, can be extended to any situation in which the properties of single objects were previously stored in a database.
منابع مشابه
Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملSegmentation Improvement of High Resolution Remote Sensing Images based on superpixels using Edge-based SLIC algorithm (E-SLIC)
The segmentation of high resolution remote sensing images is one of the most important analyses that play a significant role in the maximal and exact extraction of information. There are different types of segmentation methods among which using superpixels is one of the most important ones. Several methods have been proposed for extracting superpixels. Among the most successful ones, we can r...
متن کاملIdentification of High Crash Road Segment using Genetic Algorithm and Dynamic Segmentation
This paper presents an evolutionary algorithm for recognizing high and low crash road segments using Genetic Algorithm as a dynamic segmentation method. Social and economic costs as well as physical and mental injuries make the governments perceiving to road safety indexes in order to diminish the consequences of road accidents. Due to the limitation of budget for safety...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کامل